AI风口之下,机器视觉企业如何提高竞争力?
2023-02-24 14:51
机器视觉被誉为工业人工智能皇冠上的明珠,是实现工业互联与智能制造转型升级的核心基础设施。机器视觉极大提升生产智能化程度,下游应用广泛,我国机器视觉行业处于快速发展阶段。从长期来看,未来人口老龄化及劳动力价格上涨将带来机器替人刚需,机器视觉设备将逐步代替人工。从短期来看,制造业固定资产开支回暖、国产替代加速,将加速机器视觉设备需求释放。
PART1机器视觉资本市场活跃度增加
2022年6月20日, 国内知名的AI+3D+智能工业机器人解决方案提供商梅卡曼德宣布完成C+轮融资;2022年7月6日,凌云光技术股份有限公司在上交所A股科创板正式上市;2022年7月6日,国内领先的机器视觉核心部件供应商博视像元获近亿元天使轮融资;2022年7月7日,“奥比中光”在科创板挂牌上市;2022年7月25日,专注提供3D+AI机器视觉成套解决方案“大帧科技”完成近千万元Pre-A轮融资.....
如今,随着AI技术在工业领域的落地应用,越来越多的企业涌入,竞争也愈演愈烈,连华为也想来“分一杯羹”。眼下的机器视觉赛道,可谓是“神仙打架”。
另一方面,虽然机器视觉应用场景广阔,但我国机器视觉市场存在渗透率较低、部分场景国产水平较弱的痛点,尚处于早期阶段。总体上,机器视觉市场仍然鱼龙混杂,呈现“群魔乱舞”的局面。
PART2“三座大山”阻碍机器视觉推广
1.价格整体偏高
机器视觉产品主要分两类,第一种:相机起辅助作用,获取目标信号并反馈给机器人,由机器人执行预设动作;第二种机器主动介入机器人控制系统,通过获取到的目标位置,协助机器人完成动作。前一种产品价格一般在2-10万左右;后一种产品涉及到软件与硬件结合,价格一般在10-25万左右。对于终端用户来说,机器视觉产品整体价格偏高,不利于短期推广。
2.专业人才不足
在工业应用当中,不同行业之间的实际需求差异较大,需要机器视觉解决方案提供者对某一领域的工艺有足够深的了解,才能够提出切实有效,能够解决客户需求的方案。而机器视觉作为新兴行业,真正了解视觉技术又了解终端工艺段的人才稀少,人才不足在很大程度上限制了机器视觉的快速普及。
3.行业鱼龙混杂
由于机器视觉行业发展的异常火爆,丰厚利润驱使众多企业进入行业,导致行业发展出现了鱼龙混杂的情况,一定程度上扰乱了行业的正常发展。
PART3如何提高工业视觉企业竞争力
那么面对这种困境,整个行业企业应该如何提高自己的竞争力呢?
1.提高自主核心研发能力
工业视觉装备的主要利润集中于镜头、相机、图像传感器等核心零部件,目前国内工业机器视觉厂商的工业视觉装备大多选择日本、美国和欧洲的底层零部件。世界工业相机及镜头龙头企业巴斯勒和KOWA净资产收益率(摊薄)均达到了30%左右,CCD图像传感器龙头柯达净资产收益率高达41%。
与底层核心硬件开发企业的盈利能力相比,接近工业应用的机器视觉厂商盈利能力略低,即便是机器视觉龙头企业基恩士,其净资产收益率也仅为14%。工业领域的另一家机器视觉巨头康耐视,其净资产收益率仅为1.5%。
对于企业而言,底层软硬件研发需要投入更多研发资源和成本,对于短期经营虽然不利,但从长期看,持续的研发投入有利于帮助企业在竞争中抢占市场先机,提高相关产品的市场占有率。
2.攻克上游核心零部件供应链
对于竞争日益激烈的中国市场,机器视觉厂商推出产品的速度加快,产品技术发展迅猛,这必然对竞争者提出了更高的要求,以往简单的模仿复制已不再可行,自己的技术和产品特色才是厂商们需要考虑和挖掘的重点。
相比于持续在集成应用端做重复性劳动,向上游核心零部件产品攻关是在日益激烈的市场竞争中取得优势的最佳选择。对于工业机器视觉系统而言,工业镜头和相机是核心零部件,拥有自主研发智能工业相机能力将是企业创新能力的重要体现。
3.兼顾传统与新兴应用市场
与其他自动化产品相比,机器视觉产品属于专业性非常高的产品,对多数用户而言可能较为陌生,提高了应用门槛。从行业应用来看,电子制造仍然是拉动需求的首位行业。
根据市场调研分析,目前工业机器视觉产品2/3被电子制造、汽车制造行业所占据,其余市场份额分布于食品、包装机械、印刷等行业,并且这些行业对机器视觉产品的需求仍然在大幅增长。从未来发展前景来看,食品、包装、机械等行业自动化水平会进一步提升,对机器视觉产品的需求值得期待。
面对激烈的市场竞争,企业必须快速形成自己的竞争优势,不断完善和升级产品,积极采取应对策略,壮大自身力量。