反应式步进电机又称为磁阻式步进电机,其典型是一台三相电机,定子铁心由硅钢片叠成,定子上有6个磁极,每个磁极上又各有5个均匀分布的矩形小齿。三相电机共有三套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相。转子也是由叠片铁心构成,转子上没有绕组,而是由40个矩形小齿均匀分布在圆周上,相邻两齿之间的夹角为9度。
按励磁方式分类,步进电机可分为反应式、永磁式和感应子式。其中反应式步进电机用的比较普遍,结构也较简单。
其工作原理。当某相绕组通电时,对应的磁极就会产生磁场,并与转子形成磁路。若此时定子的小齿与转子的小齿没有对齐,则在磁场的作用下,转子转动一定的角度使转子齿与定子齿对应。由此可见,错齿是促使步进电机旋转的根本原因。例如,在单三拍运行方式中,当A相控制绕组通电,而B、C相都不通电时,由于磁通具有力图走磁阻最小路径的特点,所以转子齿与A相定子齿对齐。若以 此作为初始状态,设与A相磁极中心磁极的 图1 步进电机剖面结构转子齿为0号齿,由于B相磁极与A相磁极相差120度,且120度/9度=13.333不为整数,所以,此时13号转子齿不能与B相定子齿对齐,只是靠近 B相磁极的中心线,与中心线相差3度。如果此时突然变为B相通电,而A、C相都不通电,则B相磁极迫使13号小齿与之对齐,整个转子就转动3度。此时称电机走了一步。
同理,我们按照A→B→C→A顺序通电一周,则转子转动9度。转速取决于各控制绕组通电和断电的频率(即输入脉冲频率),旋转方向取决于控制绕组轮流通电的顺序。如上述绕组通电顺序改为A→C→B→A••••••则电机转向相反。
这种按A→B→C→A••••••方式运行的称为三相单三拍,“三相”是指步进电机具有三相定子绕组,“单”是指每次只有一相绕组通电,“三拍”是指三次换接为一个循环。
此外,三相步进电机还可以以三相双三拍和三相六拍方式运行。三相双三拍就是按AB→BC→CA→AB••••••方式供电。与单三拍运行时一样,每一循环也是换接3次,共有3种通电状态,不同的是每次换接都同时有两相绕组通电。三相六拍的供电方式是A→AB→B→BC→C→CA→A••••••每一循环换接六次,共有六种通电状态,有时只有一相绕组通电,有时有两相绕组通电。
磁阻式步进电机的步距角可由下边公式求得
式中Mc为控制绕组相数,C为状态系数,三相单三拍或双三拍时C=1,三相六拍时C=2。Zr为转子齿数,本课题使用的36BF003型步进电机转子齿数为40。
减小步距角的途径方法
由⑴式可知,本课题使用的步进电机未细分时能达到的最小步距角为1.5度(三相六拍模式)。转速较高时,由于转子本身的惯性,电机可近似看作匀速转动。但在低速运行时,较大的步距角造成两步之间的时间间隔较长,在下一个电脉冲到来之前转子已经停止转动,由此造成运行的不连续及低频振动。此外实际应用中 1.5度的步距角往往不能满足精度需要,为了提高精度,要求一个脉冲对应的位移量小,即步进电机的步距角小。减小步距角有以下四种方法:
1、增加步进电机控制绕组的数量。由⑴式可知,步距角Q与绕组数Mc成反比,Mc越大则Q越小。三相步进电机单拍运行时的步距角为3度(40转子齿),如果采用四相电机,则步距角减小到1.8度(50转子齿)。但是相数越多电机结果越复杂,制造越困难,靠增加相数减小步距角的成本很高。
2、增加拍数。即增大状态系数C。由⑴式知状态系数也与步距角成反比,增加拍数相当于增加绕组相数。三相步进电机单三拍运行时步距角为3度,采用三相六拍模式后步距角减小到原来的一半。但步进电机所能实现的拍数同绕组相数直接相关,三相步进电机最多能实现的拍数是六拍,四相电机最多八拍。靠增加拍数减小的步距角有限。
3、增加转子齿数Zr。由于Zr与步距角Q成反比,增加转子齿数也能减小步距角。但受加工精度、制造成本限制,转子齿数不能无限增多。
4、采用细分电路。对于一个步进电机,采用细分电路后其步距角减小为原来的1/N(N为细分数)。理论上N可以无限增大,从而步距角Q可以无限减小。细分电路对于任何反应式步进电机都适用,尤其是步距角较大的低端步进电机,能显著减小步距角,提高运动精度,从而在某些场合可以代替高端步进电机。
最后修改:2010/9/27 1:01:23